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High-throughput in vitro screening has accelerated the discovery of 
drug candidates, but paradoxically coincides with a steep decline in 
the approval rate for novel molecular entities1,2. The enormous rate 
of attrition as drug candidates move through clinical development 
can be partly attributed to the disconnect between human physiology 
and the in vitro screening regimen, which cannot measure efficacy in 
heterogeneous tissues or detect off-target toxicities2–4. If the original  
screening regimen more closely reflected human physiology by 
using human samples, such as PBMCs or cancer biopsies, efficacy 
and toxicity could be identified earlier in the development process. 
High-dimensional analysis of cellular signaling networks can pro-
vide a detailed representation of cellular state5,6; it is often presumed 
that additional biologically informative measurements of markers of 
pathways would be a desirable outcome for high-throughput screen-
ing. Compounds that target certain signaling molecules can lead to 
successful therapeutic outcomes7, but many compounds that target 
known oncogenic lesions lack clinical efficacy8. As such, the in vitro 
targets of a drug candidate cannot be used to accurately predict effi-
cacy in vivo owing to signaling network complexity and differences 
between patients or cell subpopulations of the same patient6,7,9–12. 
Therefore, high-content, single-cell analysis of signaling networks 
in human samples during drug development could provide welcome 
insight into the manifold effects of drugs on cellular systems.

We propose that an ideal drug-screening approach should, first, 
be based on primary human samples, with systemic behavior that 
resembles normal physiology and the targeted disease state. Second, 
subpopulation-specific, system-wide signaling networks and their 
correlation to cell and disease phenotypes should be quantified, 

providing a comprehensive view of the cellular state. Third, inter-
cellular communication and emergent systems properties should be 
evaluated. And, lastly, measurements should be performed with high 
throughput. A screening approach with these features would enable 
the identification of compounds with in vivo efficacy against the tar-
geted disease and low toxicity at the earliest stage of drug discovery.

Some methods have attempted to implement these features. Parallel 
enzymatic or phage display assays offer exceptional in vitro selectivity 
profiling13–17, but do not provide in vivo data. Cellular assays based 
on proliferation, apoptosis or expression of reporter proteins approxi-
mate in vivo activity18, but drug selectivity, mechanism of action and 
signaling network responses cannot be determined. Gene expression 
analysis19,20 and liquid chromatography coupled to tandem mass 
spectrometry6,21,22 measure thousands of parameters, but lack high 
throughput and single-cell resolution23,24. High-throughput micro-
scopy offers deep characterization of single cells23–25, but the limited 
number of surface and signaling molecules measured simultaneously 
restricts the breadth of analysis.

Fluorescence-based flow cytometry (FBFC) permits measurement 
of up to 12 molecules on a single cell simultaneously26–28, allowing 
cell subpopulations and their signaling network states to be deter-
mined at the same time29. Drug-screening applications for FBFC 
have been implemented by hardware30,31 or by sample multiplexing 
with fluorescent cell barcoding (FCB)32,33. With these adaptations, 
FBFC has become a powerful tool for drug screening and preclinical 
analysis. FBFC falls short of the ideal drug screening method, how-
ever, because the number of simultaneously measured parameters is 
limited owing to spectral overlap27, hampering the comprehensive 

Multiplexed mass cytometry profiling of cellular states 
perturbed by small-molecule regulators
Bernd Bodenmiller1,5,6, Eli R Zunder1,6, Rachel Finck1,6, Tiffany J Chen1–3, Erica S Savig1,4,  
Robert V Bruggner1,2, Erin F Simonds1, Sean C Bendall1, Karen Sachs1, Peter O Krutzik1 & Garry P Nolan1

Mass cytometry facilitates high-dimensional, quantitative analysis of the effects of bioactive molecules on human samples at 
single-cell resolution, but instruments process only one sample at a time. Here we describe mass-tag cellular barcoding (MCB), 
which increases mass cytometry throughput by using n metal ion tags to multiplex up to 2n samples. We used seven tags to 
multiplex an entire 96-well plate, and applied MCB to characterize human peripheral blood mononuclear cell (PBMC) signaling 
dynamics and cell-to-cell communication, signaling variability between PBMCs from eight human donors, and the effects of 27 
inhibitors on this system. For each inhibitor, we measured 14 phosphorylation sites in 14 PBMC types at 96 conditions, resulting 
in 18,816 quantified phosphorylation levels from each multiplexed sample. This high-dimensional, systems-level inquiry allowed 
analysis across cell-type and signaling space, reclassified inhibitors and revealed off-target effects. High-content, high-throughput 
screening with MCB should be useful for drug discovery, preclinical testing and mechanistic investigation of human disease.

1Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, USA. 2Biomedical Informatics 
Program, Stanford University, Stanford, California, USA. 3Department of Computer Science, Stanford University, Stanford, California, USA. 4Cancer Biology Program, 
Stanford University, Stanford, California, USA. 5Present address: Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. 6These authors 
contributed equally to this work. Correspondence should be addressed to G.P.N. (gnolan@stanford.edu).

Received 30 April; accepted 2 July; published online 19 August 2012; corrected online 23 August 2012; doi:10.1038/nbt.2317

np
g

©
 2

01
2 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nbt.2317
http://www.nature.com/naturebiotechnology/


�	 advance online publication  nature biotechnology

A rt i c l e s

analysis of signaling network states within 
complex cell populations.

A recent advance in flow cytometry—mass 
cytometry—increases the number of parameters that can be mea
sured, reduces overlap between measurement channels and eliminates 
background autofluorescence34,35. For mass cytometry, antibodies are 
labeled with isotopically pure metals36 and quantified by inductively 
coupled plasma mass spectrometry. Current labeling techniques allow 
for 34 parameter measurements35. The large number of parallel mea
surements per cell makes mass cytometry an ideal method to assay 
drug candidates for cellular efficacy and selectivity.

To bring mass cytometry closer to the ideal screening approach, we 
have developed MCB, a cell-based multiplexing technique analogous 
to FCB, which improves sample throughput, reduces antibody con-
sumption and ensures uniformity of the antibody stain across samples. 
In MCB, cells in each sample are tagged with a unique combination 
of mass tags before samples are combined. We arrayed samples in a 
96-well format, which we then multiplexed and analyzed on one run 
through a mass cytometer. We used MCB to study PBMC signaling 
dynamics and cell-to-cell communication, to measure the variability 
of PBMC signaling responses between eight human donors and to 
define the effects of 27 kinase inhibitors on 14 PBMC subpopula-
tions. In contrast to conventional approaches, which may use a single 
molecular readout of a signaling protein and pathway, we measured 
the concentration of 14 signaling proteins. This large number of 
simultaneously measured parameters enabled the context-specific 
classification of inhibitors and cell types. This analysis revealed that 
none of the compounds tested was specific for a single cell type, that 
inhibitor activity and selectivity were strongly dependent on context, 
and that the established topology of hierarchical relationships among 
PBMC cell types could be recapitulated based on signaling network 
responses alone.

RESULTS
Mass-tag cellular multiplexing
For mass cytometry the lanthanide series of transition metal  
elements is used as they are normally not present in biological  
samples, a large number of stable isotopes that can be enriched to high 

purity are available, and their +3 oxidation state allows chelation into 
cell-labeling reagents. For MCB, we used the bifunctional molecule 
maleimido-mono-amide-DOTA (mDOTA) for chelation (Fig. 1a). 
The DOTA moiety chelates rare earth metal lanthanide(III) ions with 
a Kd of ~10−16 and the maleimide moiety rapidly reacts covalently 
with cellular thiol groups (Fig. 1a and Supplementary Fig. 1). Using 
binary combinations of seven preloaded mDOTA-lanthanide(III) 
reagents, 128 (27) combinations are possible, enabling all of the wells 
in a 96-well plate to be multiplexed in a single reaction (Fig. 1b). 
The MCB protocol is experimentally similar to the FCB protocol 
(Supplementary Note 1)32,33, and after measurement, the data set 
is deconvolved with Boolean gating on the mDOTA-lanthanide(III) 
channels (Fig. 1c).

To test the accuracy and robustness of the MCB method, we used 
two reference cell samples differing in the abundance of phosphory
lation on Tyr696 on the SH2 domain–containing 76-kDa leukocyte 
protein (SLP76) (Supplementary Fig. 2). We arranged the samples in 
checkerboard or striped patterns on 96-well plates for MCB analysis. 
After 96-well multiplexing, mass cytometry analysis of Tyr696 phos-
phorylation, and deconvolution, we were able to accurately recover 
the patterns (Fig. 1d). The resulting Z-prime values (a measure of the 
quality for an assay for high-throughput screening approaches) from 
the checkerboard and striped 96-well plates were 0.61 and 0.58, respec-
tively, indicating that MCB is suitably robust for high-throughput  
drug screening applications.

Time-course analysis of PBMC signaling
To confirm that MCB allows detection of physiological signaling 
events in PBMCs and to assess subpopulation-specific signaling 
dynamics, we used MCB (Supplementary Fig. 3) to carry out 
a 96-sample time-course experiment from 0 to 4 h (Fig. 2a and 
Supplementary Results 1). Fourteen signaling nodes and 10 cell-
surface markers were measured over 12 stimulation conditions 
from one donor sample (Fig. 2a,b). To identify PBMC populations 
(Fig. 2c) and their signaling response, we applied spanning-tree 
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Figure 1  Mass-tag cell barcoding. (a) Cells  
were covalently labeled with a bifunctional  
compound, maleimido-mono-amide-DOTA  
(mDOTA). This compound can be loaded  
with a lanthanide(III) isotope ion, and reacts  
covalently with cellular thiol groups through  
the maleimide moiety. (b) Seven unique  
lanthanide isotopes were used to generate  
128 combinations, enough to barcode each  
sample in a 96-well plate. The seven lanthanide  
isotopes, their masses and their locations on  
the 96-well plate are shown. (c) A density dot  
plot of barcoded cells is shown with the y-axis  
and x-axis plot showing barcoding (BC) channel 1  
(lanthanum 139) versus barcoding channel 2  
(praseodymium 141). Cells positive and 
negative for a given channel are indicated.  
(d) K562 cells were stimulated with orthovanadate,  
placed in a 96-well plate as geometrical patterns 
(checkerboard or striped pattern), barcoded, 
analyzed by mass cytometry and subsequently 
deconvoluted using Boolean gating to validate the 
accuracy of the de-barcoding. The two resulting 
heatmaps of the measured SLP76-Tyr696 
phosphorylation levels are shown.
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progression analysis of density-normalized events (SPADE)35,36 
(Fig. 2b–e and Supplementary Note 2).

After interferon-alpha (IFN-α) stimulation, STAT1, STAT3 
and STAT5 phosphorylation was induced in most cell types38–40  
(Fig. 2c,d and Supplementary Fig. 4); induction peaked at 15 min 
and then declined, although elevated STAT1 phosphorylation was 
maintained for 4 h in B cells and natural killer (NK) cells (Fig. 2d). 
Unlike STAT3 and STAT5, prestimulation and IFN-α–induced phos-
phorylation levels of STAT1 varied widely among cell types, from a 
twofold induction in CD14+ monocytes, to a fivefold induction in 
other cell types (Fig. 2d). In IFN-α–stimulated T cells, STAT5 phos-
phorylation returned to prestimulation levels after initial activation, 
but time-dependent differences in STAT5 induction were observed 
in T-cell subtypes (Supplementary Fig. 5).

Time-course analysis by MCB also allowed identification of time-
dependent phenomena such as feedback regulation (Supplementary 
Note 3 and Supplementary Figs. 6 and 7) and intercellular com-
munication. Monocytes, which express the lipopolysaccharide (LPS) 
receptor toll-like receptor 4 (TLR4)41, responded first to LPS stimula-
tion, with phosphorylation of the canonical LPS pathway members 
p38, ERK and NFκB peaking at 15–30 min, followed by S6 phospho-
rylation, which peaked after 2 h (Fig. 2e and Supplementary Fig. 8),  
in agreement with previously reported results42. Cells with little  
or no LPS receptor expression41, including B cells, T cells and NK 
cells, responded to LPS at later time points. STAT3, STAT5 and ITK 

phosphorylation occurred in T cells and NK cells after 2 h and STAT1 
phosphorylation in B cells after 4 h (Fig. 2e and Supplementary 
Fig. 9), which is likely attributable to intercellular communication 
through interleukin (IL-6) or other factors, such as TNF-α, which are 
known to be released by monocytes after LPS stimulation43. These 
results show that the MCB method can be used to identify novel, 
dynamic signaling events and intercellular communication on the 
network-scale level in complex, heterogeneous cell samples.

Comparison of signaling response in PBMCs from multiple donors
To assess variability in signaling between donors, we interrogated 
eight PBMC samples using MCB (Figs. 1 and 3a). As in the previous 
experiment, 14 signaling nodes and 10 cell-surface markers were 
measured over 12 stimulation conditions (Fig. 3a and Supplementary 
Fig. 6) and analyzed using SPADE39. Samples were collected 30 min 
after stimulation, as the previous time-course experiment revealed 
maximal signaling response at this point for most stimulus- and 
phosphorylation-site pairs.

The percentage of each cell type varied between the donor PBMC 
samples (Supplementary Table 1). Monocytes ranged from 15%  
(donor 7) to 26% (donor 3), T cells from 29% (donor 3) to 51%  
(donor 2), and B cells ranged from 5% (donor 2) to 11% (donor 3).  
A similar range of cell percentages was also visible for the cell sub-
types (Supplementary Table 1). The relative expression levels of the 
surface markers used for immune phenotyping were similar across 

0 min

5 min

15 min

30 min

60 min

120 min

240 min

1 min

IFN-α
pSTAT1

da
pV

O
4

IL
-2

G
-C

S
F

IL
-1

2
R

ef
er

en
ce

IL
-3

G
M

-C
S

F
B

C
R

/F
cR

-X
L

IF
N

-γ
IF

N
-α

LP
S

P
M

A
/Io

no
.

12 conditions

8 
tim

e 
po

in
ts

0 min

5 min
15 min
30 min
60 min
120 min
240 min

1 min

b
CD4

CD3CD7

CD33 HLA-DR

IgM

CD14

CD20

CD123

c

CD4+ T cells

CD8+ T cells

NK cells

IgM+ B cells

IgM– B cells

Dendritic cells

CD14–

monocytes %
Maximum

e
LPS

pNF�B
LPS

pSTAT3
LPS

pBTK/pITK

Not shown: CD14+ Surfaceneg. & CD14– Surfaceneg.

HLA-DRhigh

HLA-DRMed

HLA-DRlow

HLA-DRhigh

HLA-DRMed

HLA-DRlow

CD14+

monocytes

0 100

Figure 2  PBMC signaling time-course experiment. (a) Twelve conditions and eight different time points were used to capture time-resolved PBMC 
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the donor samples (e.g., CD3, Fig. 3b), except 
for CD33, with donors 3 and 4 showing lower 
expression (Fig. 3c)44.

Despite differences in cell type abundances, cell signaling in each 
cell population was similar across the eight donor samples, includ-
ing S6 phosphorylation after BCR/FcR-XL induction (Fig. 3d and 
Supplementary Results 2). Systematic evaluation of signaling 
response similarity between donors revealed a high correlation of 
fold-change induction for each stimulus, phosphorylation site and 
cell type combination between donors (Fig. 3e), ranging from 0.67 
(donor 4 versus donor 6) to 0.93 (donor 7 versus donor 8) (Fig. 3e).  
Exceptions existed. Contrary to all other donors, phosphorylation 
on STAT5 and STAT3 was hardly induced in T cells after INF-α  
stimulation in donor 6 (Fig. 3f and Supplementary Fig. 10),  
but phosphorylation on STAT1 was induced (Supplementary  
Fig. 10), and monocytes of the same donor showed induction of  
phosphorylation on STAT3 and STAT5 (Supplementary Fig. 11).  
These results show that cellular signaling was largely similar  
between individual donor PBMC samples, even when the cell type 
abundances varied.

Systematic quantification of PBMC response to kinase inhibition
To systematically quantify PBMC response to kinase inhibition, we 
applied 96-well MCB to PBMCs treated with an eight-step, fourfold 
dose-response titration of 27 unique small-molecule inhibitors, and 
used the resulting data to calculate the half-maximal inhibitory con-
centration (IC50) and percent inhibition (Fig. 4a). Twelve stimula-
tion conditions were used for 30 min to maximize signaling-space 
coverage (Fig. 4b). Seven channels were used for MCB, 10 for cell-
surface marker quantification to resolve 14 cell types (Fig. 4c) and  
14 to quantify protein phosphorylation sites (Fig. 4d), covering 
important signaling pathways in all cell types for a network-wide 
signaling map (Supplementary Fig. 6). We used a single PBMC donor 
sample for all inhibitors to allow comparability, and we tested one 
inhibitor, the JAK1/JAK2 inhibitor ruxolitinib (Jakafi), against four 
donors to determine inhibitor response variability.

We quantified 18,816 phosphorylation site levels per inhibitor  
(12 stimuli × 8 doses × 14 cell types × 14 phosphorylation sites), yield-
ing 2,352 dose-response titrations (14 cell types × 14 phosphorylation 
sites × 12 stimuli) for a total of 63,504 dose titrations. The extracted 
parameters of all dose response curves, including IC50, fold-change, 
percent inhibition values, the corresponding confidence intervals and 
Z-prime scores are given in Supplementary Results 3. To visualize 

the data, we systematically organized the inhibitor IC50 values and 
percent inhibition according by cell type and cell stimulus, and plotted 
the data in a two-dimensional layout guided by canonical pathways 
(Fig. 5 and Supplementary Results 4–6).

Inhibitor selectivity
To assess inhibitor selectivity, we compared the known targets of each 
inhibitor (Supplementary Fig. 6) to its MCB-generated inhibition 
fingerprint (Fig. 5 and Supplementary Results 4–6). Kinase inhibitors 
with a wide range of targets based on their in vitro inhibition profiles, 
such as staurosporine13,14,16,17 (Fig. 5b,c, column 22) or the receptor 
tyrosine kinase (RTK) inhibitor sunitinib (Sutent)14,16,17 (Fig. 5b,c, 
column 24), reduced phosphorylation levels of at least one measured 
signaling protein in all cell types under all conditions. In contrast, 
other inhibitors showed more selectivity for cell type and stimulus.

Next, we analyzed the signaling network response patterns to deter-
mine the putative selectivity of inhibitors of the JAK-STAT pathway. 
Cytokine receptors coupled to the JAK-STAT pathway activate a spe-
cific set of JAKs (of the four JAK-family kinases: JAKs 1–3, TYK2) upon 
ligand binding, which in turn phosphorylate a defined subset of STAT 
proteins (STAT1–6)38,39. Seven of the stimuli used (IFN-α, IFN-γ,  
G-CSF, GM-CSF, IL-2, IL-3 and IL-12) induce previously reported38,39 
JAK-STAT pairs (Supplementary Table 2), allowing the selectivity of 
JAK inhibitors to be assessed. These inhibitors included ruxolitinib45, 
clinically approved for treatment of myelofibrosis; tofacitinib, a JAK3 
inhibitor in phase 3 clinical testing against rheumatoid arthritis;  
lestauritinib, a JAK2 and tyrosine kinase inhibitor entering a phase 1 
clinical trial; and several research tool compounds, including JAK2 
inhibitor III, JAK3 inhibitor VI and pan-JAK inhibitor I.

We observed reduced phosphorylation of various STATs after inhi-
bition with tofacinib compared to control, when we stimulated diverse 
cell types with GM-CSF, IL-3, IL-2, G-CSF, IFN-α and IFN-γ, indicat-
ing that tofacinib is a pan-JAK inhibitor (Supplementary Fig. 12a). 
Higher IC50 values on JAK2-dependent phosphorylation of STAT5 
after IL-3 or GM-CSF stimulation compared with JAK1- and/or 
JAK3-dependent phosphorylation after IL-2 or IFN-α stimulation 
(Supplementary Fig. 12a,b) suggest that both JAK1 and JAK3 and 
to a lesser extent JAK2 or TYK2 are inhibited by tofacinib. This is in 
agreement with our in vitro kinase inhibition profile (Supplementary 
Table 3), but differs slightly from published in vitro data16.
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Broad inhibitory effects on STAT phosphorylation after GM-CSF, 
IL-3, IL-2, G-CSF, IFN-α and IFN-γ stimulation were also observed for 
ruxolitinib (Supplementary Fig. 13), lestauritinib (Supplementary 
Fig. 14) and the pan-JAK inhibitor I (Supplementary Fig. 15), in agree-
ment with our in vitro inhibition profile (Supplementary Table 3).  
Furthermore, lestauritinib and the pan-JAK inhibitor showed size-
able effects on signaling outside the JAK pathways (Supplementary  
Figs. 14 and 15), indicating that these inhibitors affected many signal-
ing network nodes.

Detailed inhibition profile analysis of JAK2 inhibitor III 
(Supplementary Note 4 and Supplementary Fig. 16a,b) and JAK3 
inhibitor VI (Supplementary Note 5 and Supplementary Fig. 17a,b) 
indicated inhibition of TYK2 activity by JAK2 inhibitor III and inhibi-
tion of JAK1/TYK2 activity by JAK3 inhibitor VI, rather than JAK2 
inhibition by JAK2 inhibitor III and Jak1-JAK3 inhibition by JAK3 
inhibitor VI (Supplementary Notes 4,5 and Supplementary Results 5).  
Comparison of the JAK2 inhibitor III MCB results with the in vitro 
kinase assay results were surprising (Supplementary Table 3). The 
JAK2 inhibitor III did not inhibit JAK-family kinases at concentra-
tions ≤10 µM. This discrepancy between in vitro and in vivo results 
could be due to an allosteric mechanism of inhibition not recapitu-
lated in vitro, or additional off-target effects. The JAK2 inhibitor III 
structure suggests that it is not an ATP-competitive inhibitor, because 

it is bulkier than most ATP-competitive kinase inhibitors and it lacks 
the critical H-bond donor and acceptor pair46.

We also analyzed inhibitors of the PI3K-AKT-mTOR-p70S6K 
signaling pathway (Supplementary Note 6, Fig. 5b colored boxes 
and Supplementary Figs. 18–20). Taken together, these results show 
that MCB can be used to generate a cellular inhibitor ‘fingerprint’ and 
to investigate target selectivity with unprecedented resolution and 
throughput in complex cellular mixtures.

Cell type selectivity
We next investigated the cell type selectivity for each inhibitor by 
analyzing the signaling response data from 14 cell types. No inhibi-
tor showed exclusive selectivity for a single cell type, and inhibitors 
with broad pathway activity, such as staurosporine and sunitinib, 
displayed little to no cell type selectivity (Fig. 5b,c, columns 22  
and 24). In general, the inhibition profile of HLA-DRmid monocytes  
differed from those of other cell types (Supplementary Results 4). 
Inhibitors of the Src family kinases (SFKs) and receptor tyrosine 
kinase (RTKs)—dasatinib, LCK inhibitor and PP2—inhibited SFK 
downstream signaling components in monocytes compared to other 
cell types, including SYK, PLCγ2 and BLNK, often independent of 
stimulation (Supplementary Figs. 21 and 22). Many inhibitors in 
addition to the JAK inhibitors and sunitinib affected JAK-STAT 
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signaling in monocytes (Supplementary Figs. 21 and 22), independ-
ent of stimulation conditions, indicating that under the conditions of 
our assay, SFK and JAK-STAT signaling pathways are active in mono-
cytes, but inactive in T cells, B cells, dendritic cells and NK cells.

The data also enabled the comparative analysis of cell-signaling-
network responses to inhibition in closely related cell types. Such 
responses differ only to a few compounds, including imatinib (Gleevec; 
Supplementary Note 7 and Supplementary Fig. 23), the c-Jun  
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N-terminal kinase (JNK) inhibitor SP600125 (Supplementary Note 7  
and Supplementary Fig. 24) and the aminoquinone antitumor 
antibiotic, streptonigrin. Streptonigrin induced differential signal-
ing responses in monocyte subtypes (Supplementary Note 7 and 
Supplementary Fig. 25a–d) and in T cells and B-cell subtypes on S6, 
PLCγ2, SLP76/BLNK and STAT5, often independently of the stimu-
lation (Supplementary Fig. 25c,d, columns 10–14, yellow boxes).  
In CD8+ T cells and IgM+ B cells, streptonigrin often had low IC50 
values and strongly inhibited phosphorylation, but we observed only 
a weak inhibition in CD4+ T cells and IgM– B cells (Supplementary 
Fig. 25c,d, columns 10–14, yellow boxes) on the same sites. An excep-
tion was when cells were stimulated with PMA-ionomycin; inhibi-
tion of most signaling molecules was detected in most cell types 
(Supplementary Fig. 25d, row 11, gray and red boxes). Streptonigrin 
interferes with cell replication, transcription and cell respiration47, 
but how this might lead to the observed differences is unclear. An 
overview of the cell type profiles of each inhibitor tested is shown in 
Supplementary Results 4.

Overall, these results demonstrate that MCB can be used to reveal 
how different cell types and their underlying signaling network states 
are uniquely affected by given inhibitors, underscoring the need for 
deep signaling profiling for supporting the development of cell type-
specific compounds.

Systematic analysis of cell type and inhibitor similarity
We next sought to use the large number of signaling molecules quanti-
fied per cell type under many conditions to characterize the cell types 
and inhibitors. We analyzed the complete data set and the effect of a 
drug in a single cell type and condition. To analyze cell type similarity,  
we generated a matrix of IC50 values representing the effects of each 

inhibitor for each cell type, stimulation and phosphorylation site. 
Likewise, to analyze inhibitor similarity, we created a matrix of IC50 
values representing cell type response for each inhibitor, stimulation 
and phosphorylation site. We performed principal component ana
lysis (PCA) on each of these matrices to ask which cell types or inhibi-
tors were similar in the reduced-dimensionality space.

When the first matrix is used in the PCA to determine cell type 
similarity, the cell types with related immune functions, such as the 
lymphocytes, were grouped closely within principal component space, 
as defined by all determined components (encompassing up to 90% of 
the total variance), forming their own cluster (Fig. 6a). A second and 
third cluster were formed by the monocyte lineage, with closely related 
monocyte subtypes being also closest in principal component space. We 
also carried out biclustering of data for all cell types (Supplementary 
Fig. 26), which showed that at this level of signaling network resolu-
tion, the established endpoint topology of hematopoiesis41 in PBMCs 
was recapitulated based on signaling network response alone.

When the input matrix was restricted to the streptonigrin-induced 
signaling responses (Fig. 6b), a distinct picture emerged. Closely related 
immune cell types were differentially affected, as CD8+ T cells, IgM+  
B cells, CD14– surfaceneg and NK cells formed their own cluster in 
principal component space, distant from CD4+ T cells and IgM– B cells.  
The PCA also captured the differences in inhibitor impact among 
the monocyte subtypes compared to the PCA over all conditions, in 
concordance with analysis from the “Cell type selectivity” section 
(Supplementary Note 7 and Supplementary Fig. 25).

In a second analysis, we transposed the matrix to ask which inhibi-
tors clustered together in the reduced-dimensionality space defined by 
all cell type signaling states and conditions (Fig. 6c). The general kinase 
inhibitors staurosporine, lestauritinib and streptonigrin and the SFK 
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and RTK inhibitors sunitinib, PP2, dasatinib and LCK inhibitor formed 
their own cluster in principal component space, reflecting their overall 
high impact on signaling networks across cell types and conditions.

By restricting the input matrix to monocytes after IFN-α stimula-
tion across all inhibitors, we addressed the question of which inhibitors 
similarly affect JAK-STAT signaling (Fig. 6d). JAK2 inhibitor III, JAK3 
inhibitor VI, tofacinib, crassin, SP600125 (a JNK inhibitor) and VX680 
inhibitor formed a tight group. As described above, the JAK inhibi-
tors inhibited JAK-STAT signaling after IFN-α stimulation in most 
cell types. However, Crassin also displayed a similar profile (Fig. 5c,  
row 4, pink box), reproducing a recent finding32. SP600125 was not 
specific for JNK inhibition, but also inhibited phosphorylation of 
STAT3 and STAT5 across many cell types (Fig. 5c, column 21, yel-
low box; Supplementary Fig. 24 and Supplementary Fig. 27). The 
ability of SP600125 to inhibit JAK-STAT signaling was confirmed 
by in vitro kinase inhibition assays (Supplementary Table 3). Here 
IC50 values of 974 nM, 736 nM, 344 nM and 440 nM were measured 
for JAK1, JAK2, JAK3 and TYK2, respectively. VX680, an inhibitor 
of Aurora kinases, which is also active against BCR-ABL, FLT3 and 
JAK2 (ref. 48), was close to SP600125 in principal component space. 
Phosphorylation of STAT3 and STAT5 were inhibited in the presence 
of VX680 after IFN-α stimulation in many cell types (Fig. 5c, column 
28, blue box and Supplementary Fig. 28a,b, row 5, green box). This 
suggests that VX680 inhibits JAK1 and, even more potently according 
to the in vitro data, TYK2 (Supplementary Table 3). However, for 
VX680, we observed no or only weak inhibition of phosphorylation 
on STAT5 after GM-CSF or IL-3 stimulation, indicating the absence 
of JAK2 inhibition, contrary to the in vitro data (Supplementary  
Fig. 28b, red boxes).

These results show that PCA allows characterization and identifi
cation of similar cell type responses to a given inhibitor and that 
the inhibitor-induced signaling states were sometimes independent  
of cell type and immune function, indicating enormous plasticity 
in the cellular signaling network. In addition, PCA allowed rapid 
classification of inhibitors based on their profiles at a given drug 
exposure or in a given experimental condition, and suggests novel 
specificities for inhibitors SP600125 and VX680.

Comparison of inhibition response in PBMCs from multiple donors
To establish whether the inhibition data sets generated from a single 
PBMC donor are generalizable or if there is variability in inhibitor 
response between donors, we measured the effects of ruxolitinib on 
four of the eight donor samples previously described that best repre-
sent the variability between donors (Fig. 3). The response to inhibi-
tion between donors was similar overall, but also showed marked 
differences (Supplementary Fig. 29). Whereas ruxolitinib inhibited 
INF-α–stimulated phosphorylation on STAT1 on IgM+ B cells, IgM– 
B cells and CD4+ T cells in all donors analyzed (Supplementary 
Fig. 29, green boxes), the same site was only inhibited in two out 
of four donors in CD8+ T cells (Supplementary Fig. 29, row 10, 
red box). Similarly, G-CSF induced phosphorylation on STAT3 in 
CD14– HLA-DRmid monocytes was inhibited in all donors except 
donor 4 (Supplementary Fig. 29, row 4, blue box). Closer inspec-
tion of these differences in inhibitor response revealed they were 
often due to inhibition curves that fall directly above or below the 
R2–fold change cutoff used as a threshold for calling a site ‘inhib-
ited’ (Online Methods), and this was often compounded by differ-
ences in the level of pathway activation observed between donors 
after stimulation (Fig. 3). We have observed such fluctuations in 
human PBMCs particularly in cases of chronic diseases involving 
inflammation (G.P.N., data not shown), indicating in part that the 

differences observed might indicate differing ‘set points’ in cell  
subset–specific activation due to prior immune encounters.

Therefore, we conclude that the 27 state-based kinase inhibitor pro-
files are a comprehensive resource describing normal healthy immune 
response to kinase inhibition. These results also underscore the need 
to measure several donor samples if an inhibitor must be extensively 
analyzed, for example, before a clinical trial.

Comparison of in vivo versus in vitro inhibition profiles
Finally, we examined the agreement between data generated by MCB 
and previously published in vitro kinase assay data, including one 
study with 14 compounds in common with this study16, and one study 
with 9 compounds in common with this study17 (Supplementary 
Results 7). We compared these data with the matrix of MCB-derived 
IC50 values representing inhibitor impact for each cell type, stimula-
tion and phosphorylation. For the MCB data set and the two in vitro 
data sets, we plotted the pairwise distances between the compounds 
against each other (Fig. 6e,f).

In general, inhibitor relatedness as measured by pairwise distances 
was similar in the in vitro and in vivo data sets, resulting in correlation 
coefficients of 0.74 and 0.75, respectively. An exception was JAK3 
inhibitor VI, for which the distance was greater to most inhibitors in 
the in vitro data set compared with the in vivo data set. Nevertheless, 
for most of the compounds analyzed, the in vitro inhibition profile 
(e.g., Go-6983, rapamycin, GDC-0941, JAK inhibitors) is largely 
in agreement with the MCB data, but caution is necessary because 
depending upon the stimulation condition, the cell types and the 
donor samples used for testing, these data may not be generalizable.  
These in vivo and in vitro approaches when used together should 
prove highly complementary for the mechanistic investigation of cel-
lular signaling pathways.

DISCUSSION
MCB makes possible high-throughput experiments that are  
impractical to do using FBFC or mass cytometry alone. We used 
MCB to analyze PBMC signaling dynamics, cell-to-cell communica-
tion and to comprehensively profile small-molecule drug regulators 
based on PBMC signaling network response. In these experiments, 
18,816 phosphorylation levels were quantified in 1,344 cell popula-
tions from 96 multiplexed samples for each inhibitor. By using n metal 
isotopes for binary-encoded MCB, 2n samples can be multiplexed. 
This allows >10,000 samples to be multiplexed in a single tube with 
15 channels remaining for antibody detection. At this scale, MCB 
becomes an attractive technique for high-throughput drug screening 
and genome-wide RNA interference knockdown studies.

Despite several limitations (Supplementary Note 8), the approach 
presented here allows analyses that span from the systems-level down 
to single pathways and molecules. In the experiments described, high-
level compound classification suggested novel molecular targets and 
indicated novel mechanisms of action for widely used kinase inhibi-
tors. The ability to identify bio-active compounds such as JAK2 inhib-
itor III, which presumably would not have been identified by in vitro 
screening, highlights a key advantage to the in vivo MCB approach.

As MCB enables signaling events to be monitored over time, it pro-
vides an opportunity to study the connectivity of signaling pathways, 
the effects of inhibitors on feedback signaling49, and intercellular 
communication50. Time-resolved, single-cell analysis can reveal  
differences between immediate and subsequent indirect, adaptive 
effects caused by cross-talk between signaling pathways. Our results 
indicate that data from in vivo MCB and in vitro kinome screen-
ing methods16,17 are complementary, suggesting that using both 
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approaches is a potentially useful paradigm for the investigation of 
pathway mechanism, connectivity and dynamics.

With high-throughput, systems-level coverage of the most impor-
tant signaling pathways and their interconnections for each cell type, 
the cellular signaling states induced by inhibitors could be used as a 
metric for preclinical development. Similar MCB analyses done on 
defined disease samples could be used to categorize drug effects or 
drug combinations, to eventually guide therapeutic strategies based 
on discrete knowledge of a patient’s cellular phenotypes and geno-
types. Additionally, the MCB method could be used directly as a tool 
for personalized medicine, with the pathway activation and drug 
response of a patient’s in vivo or ex vivo tissue samples used to guide 
therapy decisions.

Methods
Methods and any associated references are available in the online 
version of the paper.

Data availability. All dose response curves can be viewed and all raw 
data can be downloaded from http://www.cytobank.org/nolanlab/.  
The determined IC50 values, fold changes, percent inhibition  
values, confidence intervals and Z-prime scores are available in 
Supplementary Results 2.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Kinase inhibitors. All inhibitors and the concentrations used are given in the 
Supplementary Methods Table 1.

Preparation of barcoding reagents. Two molar equivalents of maleimido-
mono-amide-DOTA (Macrocyclics) were added to each metal chloride in  
20 mM ammonium acetate, pH 6.0. Solutions were then immediately lyophi-
lized and resulting solids were dissolved in DMSO to 10 mM for long-term 
storage at −20 °C.

PBMC isolation, culture and stimulation. Human peripheral blood, collected 
based on a protocol approved by an internal review board, was obtained from 
the Stanford Blood Bank. The samples obtained from healthy donors were 
collected in heparin sulfate anticoagulant by leukapheresis and stored at room 
temperature for 4–6 h. PBMCs were isolated by Ficoll-Paque density centrifuga-
tion. The isolated PBMCs were resuspended in freezing solution (90% FBS, 10% 
DMSO) and stored under liquid nitrogen for future use. For each use, PBMCs 
were thawed and then washed twice with room temperature PBMC media 
(RPMI, 5% FBS, 2 mM L-glutamine with 100 U/ml penicillin and 100 µg/ml  
streptomycin), incubated for 1 h at 37 °C in 5% CO2, and then stimulated as 
shown in the Supplementary Methods Table 2 by the addition of IL-2, IL-3, 
IL-12, G-CSF, GM-CSF, interferon-α, interferon-γ or LPS at 30 ng/ml, sodium 
orthovanadate at 125 µM, phorbol 12-myristate 13-acetate (PMA) at 50 nM, 
ionomycin at 1 µg/ml, or a mixture of anti-IgG, anti-IgM, anti-IgK and anti-IgL 
at 10 µg/ml each (BCR/FcR-XL).

Antibodies used for analyses. Metal-labeled antibodies were prepared as 
described35. Briefly, antibodies were obtained in carrier protein–free PBS and 
then prepared using the MaxPAR antibody conjugation kit (DVS Sciences) 
according to the manufacturer’s protocol. After determining the percent yield 
by measurement of absorbance at 280 nm, the metal-labeled antibodies were 
diluted in Candor PBS Antibody Stabilization solution (Candor Bioscience 
GmbH) for long-term storage at 4 °C. Antibodies used in this study are listed 
in the Supplementary Methods Table 3.

Accuracy and robustness assessment of MCB. For this analysis K562 cells, 
a human myelogenous leukemia cell line, either untreated or treated with 
orthovanadate was used. Orthovanadate is a broadly active protein tyrosine 
phosphatase inhibitor that increases cellular tyrosine phosphorylation levels. 
The induction of SH2 domain-containing leukocyte protein of 76 kDa (SLP76) 
phosphorylation on Tyr696 in the orthovanadate-treated cells was observed to 
be highly similar in multiplexed samples (Supplementary Fig. 2) compared 
to nonmultiplexed ones, indicating that the MCB method does not alter mass 
cytometry measurement or introduce artifacts.

Time-course experiment. Approximately 20 million PBMCs were aliquoted 
into a 96-well 2-ml block. After resting for 60 min at 37 °C, the PBMCs were 
stimulated with agents listed in the Supplementary Methods Table 2 for  
0 min, 1 min, 5 min, 15 min, 30 min, 60 min, 120 min and 240 min.

Inhibitor dose-response experiments. Approximately 20 million PBMCs 
were aliquoted into a 96-well 2-ml block. After resting for 45 min at  
37 °C, the PBMCs were pretreated with the indicated small molecule 
kinase inhibitors for 15 min, and then stimulated with agents listed in the 
Supplementary Methods Table 2 for 30 min in the presence of the inhibitor. 
Small-molecule kinase inhibitors were all dissolved in DMSO before use, and 
a 1:1,000 concentration of DMSO was used for all conditions, including the 
uninhibited control wells.

PBMC fixation and permeabilization. At the indicated time point after stimu-
lation, 1.6% formaldehyde (final concentration) was added to the PBMC media 
and cells were incubated at room temperature for 10 min. The formaldehyde 
was then diluted to 0.8% with additional PBMC media, and the fixed cells were 
centrifuged at 600g for 5 min at 4°C. After aspirating the supernatant, the cell 
pellet was resuspended in ice-cold methanol and transferred immediately to 
−80°C for long-term storage.

Cell barcoding and antibody staining. PBMC samples in methanol were 
brought from –80°C to 4°C on ice, washed once with Cell Staining Media 
(CSM, PBS with 0.5% BSA, 0.02% NaN3), and then once with PBS. The cells 
were then resuspended in PBS, and DMSO stocks of the barcoding reagent 
were added at 1:100 (to 100 nM final concentration). The cells were incubated 
at room temperature for 30 min, washed three times with CSM, and then 
pooled into a single FACS tube for staining with metal-labeled antibodies 
for 1 h at room temperature. A staining volume of 300 µl was used (~1 × 108 
cells/ml). After antibody staining, the cells were washed twice with CSM, 
and then incubated for 10 min at room temperature (or overnight at 4 °C) 
with an iridium-containing intercalator (DVS Sciences) in PBS with 1.6% 
formaldehyde. The cells were then washed three times with CSM and once 
with PBS, diluted with water to ~106 cells per ml, and filtered through a 70-µm 
membrane just before analysis by mass cytometry.

Mass cytometry analysis. Cells were analyzed on a CyTOF mass cytometer (DVS 
Sciences) at an event rate of ~500 cells per second. The settings of the instrument 
and the initial post-processing parameters were described previously34,35. For 
each barcoded sample several data files were recorded. These were concatenated 
using a script developed in house. The cadmium ion signals with the mass over 
charges of 110, 111, 112 and 114 were summed to create a single representative 
channel for the CD3-QDot 605 used in the mass cytometry analysis by the Flow 
Core package (http://www.bioconductor.org/packages/2.3/bioc/html/flowCore.
html). Before gating of the cell subpopulations and determination of the IC50 
values, the data were normalized as described previously35.

In vitro kinase assays. All analyses were performed by Reaction Biology 
Corporation, Malvern, Pennsylvania, USA, against active JAK1, JAK2, JAK3 
and TYK2. The compounds analyzed are shown in Supplementary Table 3. 
All kinase reactions were performed at 10 µM ATP using a 10-step, threefold 
serial dilution with 10 µM as the highest compound concentration.

Data analysis. The cell events measured for the PBMC time-course experi-
ment were analyzed using the software tool SPADE as described in the main 
text and previously35,37. All time-resolved response curves for all cell types 
and stimuli are shown in Supplementary Results 1.

The following summarizes the SPADE algorithm within the context of this 
time course data set. First, density-dependent down-sampling of all measured 
cell events to a defined target number with equalization of the representation 
of rare and abundant cell types was performed. The down-sampled cell events 
were then clustered based on expression of ten cell surface markers (CD33, 
CD20, CD3, CD4, CD7, CD123, CD14, CD45, IgM and HLA-DR) into pheno-
typically similar agglomerates of cells. Those agglomerates of cells phenotypi-
cally similar in ten dimensions were connected via edges to draw a minimum 
spanning tree. Next, an up-sampling step was performed to assign each cell 
event from the initial data set to the most representative agglomerate. Finally, 
the minimum spanning tree was projected in two dimensions, and circles of 
the tree representing cell agglomerates were colored by median intensity level 
of a given measured parameter allowing visualization of marker expression 
across the entire cellular hierarchy.

The cell events measured for each inhibitor were gated according to the 
scheme shown in Figure 4. Each cell type was de-barcoded individually to 
account for differences in the distributions of barcode metals due to differing 
cell sizes. The de-barcoding was semi-automated for each barcode channel 
by creating a boundary at the minimum between the two peaks in the density 
estimate and then trimming 2.5% of the cells on each side of that bound-
ary. Subsequently, each cell was sorted into its barcode well according to the 
seven-digit binary number assigned. The cells determined to be in the wells 
stimulated with BCR-XL then had their IgM gates re-drawn because BCR-XL 
masks the IgM epitope and shifts the IgM distribution to lower signal levels.

The dose-response curves were then computed for every combination of 
phosphorylation site, modulator and cell type. This was done by fitting the 
arcsinh-transformed median signal value S at each dose to the sigmoidal func-
tional form S = Top + (Bottom – Top)/(1+10^(hill*(LogIC50 –LogDose))). 
The fits were calculated using MATLAB’s implementation of a trust region 
algorithm using a robust bi-square nonlinear least-squares method with each 
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point weighted by the inverse of the standard error of the mean. To deter-
mine which curves showed significant responses, the fitting scheme was first 
applied to five control plates of cells that were treated with DMSO but not 
inhibitor. Then the false-positive rate was calculated for varying levels of R2 
and fold change cutoffs (Supplementary Methods Fig. 1a). An individual 
curve was considered a responder if it exhibited a combination of R2 and fold 
change that corresponded to a <1% false-positive rate in the inhibitor-free 
plates (Supplementary Methods Fig. 1b) for a given analyzed phosphorylation 
site (Supplementary Methods Fig. 1c). All dose-response results are shown 
Supplementary Results 2–4 or can be viewed at http://www.cytobank.org/
nolanlab/ each curve is shown compared to the reference level and is overlaid 
on individual contour plots for each sample with DNA along their hidden x 
axes. Empty plots signify samples where there were zero cell counts.

The percent inhibitions reported for all drugs and conditions were those 
observed at the highest measured inhibitor concentration, regardless of 
whether saturation of inhibition was observed. For each curve, this was com-
puted by dividing the difference between the fitted curve at zero dose and at 
the highest inhibitor concentration by the absolute value of the difference 
between the fitted curve at zero dose and the reference line (Supplementary 
Methods Fig. 1).

Principal component analysis. Principal component analysis (PCA) was used 
to visualize the differences between various groups in the data, including all 
cell types, as well as the differences between all inhibitors. Features that were 
used for the PCA consisted of all IC50 values. In addition to the overall feature 

matrix, PCA was run on data stratified by various subconditions, including 
stimulation conditions. The control replicates were combined and averaged 
for this analysis. Next, the pairwise Euclidean distance between all pairs of 
points (cell types or inhibitors) in PCA space was calculated. This distance 
was calculated including those principal components that recovered 90% of 
the total variance. K-means clustering was performed using these distances to 
determine subgroups of data. A best average silhouette value >100 replicates 
of K-means was used to determine the potential number of clusters for each 
set of conditions. The final cluster number was determined by inspection 
of the silhouette plots. To simplify visualization of the overall relationships 
among data points, a minimum spanning tree was created for each cluster. 
In order to convey more information, the values of the data points mapped 
to PCA space are also represented. The color of the node represents each 
node’s location in the first principal component, and the size of the node 
represents the location of a node in the second principal component. All 
minimum spanning trees were visualized using Cytoscape. The clustergram in 
Supplementary Figure 26 was generated using the same pairwise Euclidean 
distance matrix described previously.

IC50 values contributing the most to principal components of interest were 
found by determining those values most heavily weighted in each principal 
component, >2 standard deviations from the mean. All of these methods were 
run using MATLAB’s existing toolkits.

Data visualization. All cell density plots and heat maps were created in 
Cytobank (http://www.cytobank.org/, Cytobank, Inc.).

np
g

©
 2

01
2 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.cytobank.org/nolanlab/
http://www.cytobank.org/nolanlab/
http://www.cytobank.org/


nature biotechnology

Nat. Biotechnol. doi: 10.1038/nbt.2317; corrected online 23 August 2012

Multiplexed mass cytometry profiling of cellular states perturbed by small-
molecule regulators
Bernd Bodenmiller, Eli R Zunder, Rachel Finck, Tiffany J Chen, Erica S Savig,
Robert V Bruggner, Erin F Simonds, Sean C Bendall, Karen Sachs, Peter O Krutzik & Garry P Nolan

In the version of this article initially published online, in the legend for Figure 2e, LPS stimulation was said to be by “NFκB, STAT3 and STAT1,” 
instead of by “NFκB, STAT3 and BTK/ITK.” The error has been corrected for the print, PDF and HTML versions of this article.
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